
MapReduce Patterns, Algorithms, and Use Cases

In this article I digested a number of MapReduce patterns and algorithms to give a

systematic view of the different techniques that can be found on the web or scientific

articles. Several practical case studies are also provided. All descriptions and code

snippets use the standard Hadoop‟s MapReduce model with Mappers, Reduces,

Combiners, Partitioners, and sorting. This framework is depicted in the figure below.

MapReduce Framework

http://highlyscalable.files.wordpress.com/2012/02/map-reduce.png

Basic MapReduce Patterns

Counting and Summing

Problem Statement: There is a number of documents where each document is a set of

terms. It is required to calculate a total number of occurrences of each term in all

documents. Alternatively, it can be an arbitrary function of the terms. For instance,

there is a log file where each record contains a response time and it is required to

calculate an average response time.

Solution:

Let start with something really simple. The code snippet below shows Mapper that

simply emit “1″ for each term it processes and Reducer that goes through the lists of

ones and sum them up:

1

2

3

4

5

6

7

8

9

10

11

class Mapper

 method Map(docid id, doc d)

 for all term t in doc d do

 Emit(term t, count 1)

class Reducer

 method Reduce(term t, counts [c1, c2,...])

 sum = 0

 for all count c in [c1, c2,...] do

 sum = sum + c

 Emit(term t, count sum)

The obvious disadvantage of this approach is a high amount of dummy counters

emitted by the Mapper. The Mapper can decrease a number of counters via summing

counters for each document:

1

2

3

4

5

6

7

class Mapper

 method Map(docid id, doc d)

 H = new AssociativeArray

 for all term t in doc d do

 H{t} = H{t} + 1

 for all term t in H do

 Emit(term t, count H{t})

In order to accumulate counters not only for one document, but for all documents

processed by one Mapper node, it is possible to leverage Combiners:

1

2

3

4

class Mapper

 method Map(docid id, doc d)

 for all term t in doc d do

 Emit(term t, count 1)

5

6

7

8

9

10

11

12

13

14

15

16

17

18

class Combiner

 method Combine(term t, [c1, c2,...])

 sum = 0

 for all count c in [c1, c2,...] do

 sum = sum + c

 Emit(term t, count sum)

class Reducer

 method Reduce(term t, counts [c1, c2,...])

 sum = 0

 for all count c in [c1, c2,...] do

 sum = sum + c

 Emit(term t, count sum)

Applications:

Log Analysis, Data Querying

Collating

Problem Statement: There is a set of items and some function of one item. It is

required to save all items that have the same value of function into one file or perform

some other computation that requires all such items to be processed as a group. The

most typical example is building of inverted indexes.

Solution:

The solution is straightforward. Mapper computes a given function for each item and

emits value of the function as a key and item itself as a value. Reducer obtains all items

grouped by function value and process or save them. In case of inverted indexes, items

are terms (words) and function is a document ID where the term was found.

Applications:

Inverted Indexes, ETL

Filtering (“Grepping”), Parsing, and Validation

Problem Statement: There is a set of records and it is required to collect all records

that meet some condition or transform each record (independently from other records)

into another representation. The later case includes such tasks as text parsing and

value extraction, conversion from one format to another.

Solution: Solution is absolutely straightforward – Mapper takes records one by one and

emits accepted items or their transformed versions.

Applications:

Log Analysis, Data Querying, ETL, Data Validation

Distributed Task Execution

Problem Statement: There is a large computational problem that can be divided into

multiple parts and results from all parts can be combined together to obtain a final

result.

Solution: Problem description is split in a set of specifications and specifications are

stored as input data for Mappers. Each Mapper takes a specification, performs

corresponding computations and emits results. Reducer combines all emitted parts

into the final result.

Case Study: Simulation of a Digital Communication System

There is a software simulator of a digital communication system like WiMAX that

passes some volume of random data through the system model and computes error

probability of throughput. Each Mapper runs simulation for specified amount of data

which is 1/Nth of the required sampling and emit error rate. Reducer computes

average error rate.

Applications:

Physical and Engineering Simulations, Numerical Analysis, Performance Testing

Sorting

Problem Statement: There is a set of records and it is required to sort these records by

some rule or process these records in a certain order.

Solution: Simple sorting is absolutely straightforward – Mappers just emit all items as

values associated with the sorting keys that are assembled as function of items.

Nevertheless, in practice sorting is often used in a quite tricky way, that‟s why it is said

to be a heart of MapReduce (and Hadoop). In particular, it is very common to use

composite keys to achieve secondary sorting and grouping.

Sorting in MapReduce is originally intended for sorting of the emitted key-value pairs

by key, but there exist techniques that leverage Hadoop implementation specifics to

achieve sorting by values. See this blog for more details.

It is worth noting that if MapReduce is used for sorting of the original (not

intermediate) data, it is often a good idea to continuously maintain data in sorted state

using BigTable concepts. In other words, it can be more efficient to sort data once

during insertion than sort them for each MapReduce query.

Applications:

ETL, Data Analysis

Not-So-Basic MapReduce Patterns

Iterative Message Passing (Graph Processing)

Problem Statement: There is a network of entities and relationships between them. It is

required to calculate a state of each entity on the basis of properties of the other

entities in its neighborhood. This state can represent a distance to other nodes,

http://www.riccomini.name/Topics/DistributedComputing/Hadoop/SortByValue/

 indication that there is a neighbor with the certain properties, characteristic of

neighborhood density and so on.

Solution: A network is stored as a set of nodes and each node contains a list of

adjacent node IDs. Conceptually, MapReduce jobs are performed in iterative way and at

each iteration each node sends messages to its neighbors. Each neighbor updates its

state on the basis of the received messages. Iterations are terminated by some

condition like fixed maximal number of iterations (say, network diameter) or negligible

changes in states between two consecutive iterations. From the technical point of view,

Mapper emits messages for each node using ID of the adjacent node as a key. As

result, all messages are grouped by the incoming node and reducer is able to

recompute state and rewrite node with the new state. This algorithm is shown in the

figure below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class Mapper

 method Map(id n, object N)

 Emit(id n, object N)

 for all id m in N.OutgoingRelations do

 Emit(id m, message getMessage(N))

class Reducer

 method Reduce(id m, [s1, s2,...])

 M = null

 messages = []

 for all s in [s1, s2,...] do

 if IsObject(s) then

 M = s

 else // s is a message

 messages.add(s)

 M.State = calculateState(messages)

 Emit(id m, item M)

It should be emphasized that state of one node rapidly propagates across all the

network of network is not too sparse because all nodes that were “infected” by this

state start to “infect” all their neighbors. This process is illustrated in the figure below:

Case Study: Availability Propagation Through The Tree of Categories

Problem Statement: This problem is inspired by real life eCommerce task. There is a

tree of categories that branches out from large categories (like Men, Women, Kids) to

smaller ones (like Men Jeans or Women Dresses), and eventually to small end-of-line

categories (like Men Blue Jeans). End-of-line category is either available (contains

products) or not. Some high level category is available if there is at least one available

end-of-line category in its subtree. The goal is to calculate availabilities for all

categories if availabilities of end-of-line categories are know.

Solution: This problem can be solved using the framework that was described in the

previous section. We define getMessage and calculateState methods as follows:

1

2

3

4

5

6

7

class N

 State in {True = 2, False = 1, null = 0}, initialized 1 or 2 for end-of-line categories, 0

otherwise

method getMessage(object N)

 return N.State

http://highlyscalable.files.wordpress.com/2012/01/graph-propagation-3.png

8 method calculateState(state s, data [d1, d2,...])

 return max([d1, d2,...])

Case Study: Breadth-First Search

Problem Statement: There is a graph and it is required to calculate distance (a number

of hops) from one source node to all other nodes in the graph.

Solution: Source node emits 0 to all its neighbors and these neighbors propagate this

counter incrementing it by 1 during each hope:

1

2

3

4

5

6

7

8

class N

 State is distance, initialized 0 for source node, INFINITY for all

other nodes

method getMessage(N)

 return N.State + 1

method calculateState(state s, data [d1, d2,...])

 min([d1, d2,...])

Case Study: PageRank and Mapper-Side Data Aggregation

This algorithm was suggested by Google to calculate relevance of a web page as a

function of authoritativeness (PageRank) of pages that have links to this page. The real

algorithm is quite complex, but in its core it is just a propagation of weights between

nodes where each node calculates its weight as a mean of the incoming weights:

1

2

3

4

5

6

7

8

class N

 State is PageRank

method getMessage(object N)

 return N.State / N.OutgoingRelations.size()

method calculateState(state s, data [d1, d2,...])

 return (sum([d1, d2,...]))

It is worth mentioning that the schema we use is too generic and doesn‟t take

advantage of the fact that state is a numerical value. In most of practical cases, we can

perform aggregation of values on the Mapper side due to virtue of this fact. This

optimization is illustrated in the code snippet below (for the PageRank algorithm):

1

2

3

4

5

class Mapper

 method Initialize

 H = new AssociativeArray

 method Map(id n, object N)

 p = N.PageRank / N.OutgoingRelations.size()

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 Emit(id n, object N)

 for all id m in N.OutgoingRelations do

 H{m} = H{m} + p

 method Close

 for all id n in H do

 Emit(id n, value H{n})

class Reducer

 method Reduce(id m, [s1, s2,...])

 M = null

 p = 0

 for all s in [s1, s2,...] do

 if IsObject(s) then

 M = s

 else

 p = p + s

 M.PageRank = p

 Emit(id m, item M)

Applications:

Graph Analysis, Web Indexing

Distinct Values (Unique Items Counting)

Problem Statement: There is a set of records that contain fields F and G. Count the

total number of unique values of filed F for each subset of records that have the same

G (grouped by G).

The problem can be a little bit generalized and formulated in terms of faceted search:

Problem Statement: There is a set of records. Each record has field F and arbitrary

number of category labels G = {G1, G2, …} . Count the total number of unique values

of filed F for each subset of records for each value of any label. Example:

1

2

3

4

5

6

7

8

9

10

Record 1: F=1, G={a, b}

Record 2: F=2, G={a, d, e}

Record 3: F=1, G={b}

Record 4: F=3, G={a, b}

Result:

a -> 3 // F=1, F=2, F=3

b -> 2 // F=1, F=3

d -> 1 // F=2

e -> 1 // F=2

Solution I:

The first approach is to solve the problem in two stages. At the first stage Mapper

emits dummy counters for each pair of F and G; Reducer calculates a total number

of occurrences for each such pair. The main goal of this phase is to guarantee

uniqueness of F values. At the second phase pairs are grouped by G and the total

number of items in each group is calculated.

Phase I:

1

2

3

4

5

6

7

8

class Mapper

 method Map(null, record [value f, categories [g1, g2,...]])

 for all category g in [g1, g2,...]

 Emit(record [g, f], count 1)

class Reducer

 method Reduce(record [g, f], counts [n1, n2, ...])

 Emit(record [g, f], null)

Phase II:

1

2

3

4

5

6

7

class Mapper

 method Map(record [f, g], null)

 Emit(value g, count 1)

class Reducer

 method Reduce(value g, counts [n1, n2,...])

 Emit(value g, sum([n1, n2,...]))

Solution II:

The second solution requires only one MapReduce job, but it is not really scalable and

its applicability is limited. The algorithm is simple – Mapper emits values and

categories, Reducer excludes duplicates from the list of categories for each value and

increment counters for each category. The final step is to sum all counter emitted by

Reducer. This approach is applicable if th number of record with the same f value is

not very high and total number of categories is also limited. For instance, this

approach is applicable for processing of web logs and classification of users – total

number of users is high, but number of events for one user is limited, as well as a

number of categories to classify by. It worth noting that Combiners can be used in this

schema to exclude duplicates from category lists before data will be transmitted to

Reducer.

1

2

3

class Mapper

 method Map(null, record [value f, categories [g1, g2,...])

 for all category g in [g1, g2,...]

4

5

6

7

8

9

10

11

12

13

14

15

 Emit(value f, category g)

class Reducer

 method Initialize

 H = new AssociativeArray : category -> count

 method Reduce(value f, categories [g1, g2,...])

 [g1', g2',..] = ExcludeDuplicates([g1, g2,..])

 for all category g in [g1', g2',...]

 H{g} = H{g} + 1

 method Close

 for all category g in H do

 Emit(category g, count H{g})

Applications:

Log Analysis, Unique Users Counting

Cross-Correlation

Problem Statement: There is a set of tuples of items. For each possible pair of items

calculate a number of tuples where these items co-occur. If the total number of items

is N then N*N values should be reported.

This problem appears in text analysis (say, items are words and tuples are sentences),

market analysis (customers who buy this tend to also buy that). If N*N is quite small

and such a matrix can fit in the memory of a single machine, then implementation is

straightforward.

Pairs Approach

The first approach is to emit all pairs and dummy counters from Mappers and sum

these counters on Reducer. The shortcomings are:

 The benefit from combiners is limited, as it is likely that all pair are distinct

 There is no in-memory accumulations

1

2

3

4

5

6

7

8

class Mapper

 method Map(null, items [i1, i2,...])

 for all item i in [i1, i2,...]

 for all item j in [i1, i2,...]

 Emit(pair [i j], count 1)

class Reducer

 method Reduce(pair [i j], counts [c1, c2,...])

9

10

 s = sum([c1, c2,...])

 Emit(pair[i j], count s)

Stripes Approach

The second approach is to group data by the first item in pair and maintain an

associative array (“stripe”) where counters for all adjacent items are accumulated.

Reducer receives all stripes for leading item i, merges them, and emits the same result

as in the Pairs approach.

 Generates fewer intermediate keys. Hence the framework has less sorting to do.

 Greately benefits from combiners.

 Performs in-memory accumulation. This can lead to problems, if not

properly implemented.

 More complex implementation.

 In general, “stripes” is faster than “pairs”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class Mapper

 method Map(null, items [i1, i2,...])

 for all item i in [i1, i2,...]

 H = new AssociativeArray : item -> counter

 for all item j in [i1, i2,...]

 H{j} = H{j} + 1

 Emit(item i, stripe H)

class Reducer

 method Reduce(item i, stripes [H1, H2,...])

 H = new AssociativeArray : item -> counter

 H = merge-sum([H1, H2,...])

 for all item j in H.keys()

 Emit(pair [i j], H{j})

Applications:

Text Analysis, Market Analysis

References:

1. Lin J. Dyer C. Hirst G. Data Intensive Processing MapReduce

Relational MapReduce Patterns

In this section we go though the main relational operators and discuss how these

operators can implemented in MapReduce terms.

Selection

1

2

class Mapper

 method Map(rowkey key, tuple t)

http://www.amazon.com/Data-Intensive-Processing-MapReduce-Synthesis-Technologies/dp/1608453421/

3

4

 if t satisfies the predicate

 Emit(tuple t, null)

Projection

Projection is just a little bit more complex than selection, but we should use a Reducer

in this case to eliminate possible duplicates.

1

2

3

4

5

6

7

8

class Mapper

 method Map(rowkey key, tuple t)

 tuple g = project(t) // extract required fields to tuple g

 Emit(tuple g, null)

class Reducer

 method Reduce(tuple t, array n) // n is an array of nulls

 Emit(tuple t, null)

Union

Mappers are fed by all records of two sets to be united. Reducer is used to eliminate

duplicates.

1

2

3

4

5

6

7

class Mapper

 method Map(rowkey key, tuple t)

 Emit(tuple t, null)

class Reducer

 method Reduce(tuple t, array n) // n is an array of one or two

nulls

 Emit(tuple t, null)

Intersection

Mappers are fed by all records of two sets to be intersected. Reducer emits only

records that occurred twice. It is possible only if both sets contain this record because

record includes primary key and can occur in one set only once.

1

2

3

4

5

6

7

8

class Mapper

 method Map(rowkey key, tuple t)

 Emit(tuple t, null)

class Reducer

 method Reduce(tuple t, array n) // n is an array of one or two

nulls

 if n.size() = 2

 Emit(tuple t, null)

Difference

Let‟s we have two sets of records – R and S. We want to compute difference R – S.

Mapper emits all tuples and tag which is a name of the set this record came from.

Reducer emits only records that came from R but not from S.

1

2

3

4

5

6

7

8

class Mapper

 method Map(rowkey key, tuple t)

 Emit(tuple t, string t.SetName) // t.SetName is either 'R' or 'S'

class Reducer

 method Reduce(tuple t, array n) // array n can be ['R'], ['S'], ['R' 'S'], or ['S',

'R']

 if n.size() = 1 and n[1] = 'R'

 Emit(tuple t, null)

GroupBy and Aggregation

Grouping and aggregation can be performed in one MapReduce job as follows. Mapper

extract from each tuple values to group by and aggregate and emits them. Reducer

receives values to be aggregated already grouped and calculates an aggregation

function. Typical aggregation functions like sum or max can be calculated in a

streaming fashion, hence don‟t require to handle all values simultaneously.

Nevertheless, in some cases two phase MapReduce job may be required – see

pattern Distinct Values as an example.

1

2

3

4

5

6

class Mapper

 method Map(null, tuple [value GroupBy, value AggregateBy, value ...])

 Emit(value GroupBy, value AggregateBy)

class Reducer

 method Reduce(value GroupBy, [v1, v2,...])

 Emit(value GroupBy, aggregate([v1, v2,...])) // aggregate() : sum(),

max(),...

Joining

Joins are perfectly possible in MapReduce framework, but there exist a number of

techniques that differ in efficiency and data volumes they are oriented for. In this

section we study some basic approaches. The references section contains links to

detailed studies of join techniques.

Repartition Join (Reduce Join, Sort-Merge Join)

This algorithm joins of two sets R and L on some key k. Mapper goes through all tuples

from R and L, extracts key k from the tuples, marks tuple with a tag that indicates a set

this tuple came from („R‟ or „L‟), and emits tagged tuple using k as a key. Reducer

receives all tuples for a particular key k and put them into two buckets – for R and for

L. When two buckets are filled, Reducer runs nested loop over them and emits a cross

join of the buckets. Each emitted tuple is a concatenation R-tuple, L-tuple, and key k.

This approach has the following disadvantages:

 Mapper emits absolutely all data, even for keys that occur only in one set and have no

pair in the other.

 Reducer should hold all data for one key in the memory. If data doesn‟t fit the memory,

its Reducer‟s responsibility to handle this by some kind of swap.

Nevertheless, Repartition Join is a most generic technique that can be successfully

used when other optimized techniques are not applicable.

1

2

3

4

5

6

7

8

9

10

11

12

class Mapper

 method Map(null, tuple [join_key k, value v1, value v2,...])

 Emit(join_key k, tagged_tuple [set_name tag, values [v1, v2, ...]])

class Reducer

 method Reduce(join_key k, tagged_tuples [t1, t2,...])

 H = new AssociativeArray : set_name -> values

 for all tagged_tuple t in [t1, t2,...] // separate values into 2 arrays

 H{t.tag}.add(t.values)

 for all values r in H{'R'} // produce a cross-join of the two

arrays

 for all values l in H{'L'}

 Emit(null, [k r l])

Replicated Join (Map Join, Hash Join)

In practice, it is typical to join a small set with a large one (say, a list of users with a list

of log records). Let‟s assume that we join two sets – R and L, R is relative small. If so, R

can be distributed to all Mappers and each Mapper can load it and index by the join

key. The most common and efficient indexing technique here is a hash table. After

this, Mapper goes through tuples of the set L and joins them with the corresponding

tuples from R that are stored in the hash table. This approach is very effective because

there is no need in sorting or transmission of the set L over the network, but set R

should be quite small to be distributed to the all Mappers.

1

2

3

4

5

6

7

class Mapper

 method Initialize

 H = new AssociativeArray : join_key -> tuple from R

 R = loadR()

 for all [join_key k, tuple [r1, r2,...]] in R

 H{k} = H{k}.append([r1, r2,...])

8

9

10

 method Map(join_key k, tuple l)

 for all tuple r in H{k}

 Emit(null, tuple [k r l])

References:

1. Join Algorithms using Map/Reduce

2. Optimizing Joins in a MapReduce Environment

Source: http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

http://www.inf.ed.ac.uk/publications/thesis/online/IM100859.pdf
http://infolab.stanford.edu/~ullman/pub/join-mr.pdf

