
MapReduce Patterns, Algorithms, and Use Cases 

 

In this article I digested a number of MapReduce patterns and algorithms to give a 

systematic view of the different techniques that can be found on the web or scientific 

articles. Several practical case studies are also provided. All descriptions and code 

snippets use the standard Hadoop‟s MapReduce model with Mappers, Reduces, 

Combiners, Partitioners, and sorting. This framework is depicted in the figure below. 

 

MapReduce Framework 

http://highlyscalable.files.wordpress.com/2012/02/map-reduce.png


Basic MapReduce Patterns 

Counting and Summing 

Problem Statement: There is a number of documents where each document is a set of 

terms. It is required to calculate a total number of occurrences of each term in all 

documents. Alternatively, it can be an arbitrary function of the terms. For instance, 

there is a log file where each record contains a response time and it is required to 

calculate an average response time. 

Solution: 

Let start with something really simple. The code snippet below shows Mapper that 

simply emit “1″ for each term it processes and Reducer that goes through the lists of 

ones and sum them up: 
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class Mapper 

   method Map(docid id, doc d) 

      for all term t in doc d do 

         Emit(term t, count 1) 

  

class Reducer 

   method Reduce(term t, counts [c1, c2,...]) 

      sum = 0 

      for all count c in [c1, c2,...] do 

          sum = sum + c 

      Emit(term t, count sum) 

The obvious disadvantage of this approach is a high amount of dummy counters 

emitted by the Mapper. The Mapper can decrease a number of counters via summing 

counters for each document: 
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class Mapper 

   method Map(docid id, doc d) 

      H = new AssociativeArray 

      for all term t in doc d do 

          H{t} = H{t} + 1 

      for all term t in H do 

         Emit(term t, count H{t}) 

In order to accumulate counters not only for one document, but for all documents 

processed by one Mapper node, it is possible to leverage Combiners: 
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class Mapper 

   method Map(docid id, doc d) 

      for all term t in doc d do 

         Emit(term t, count 1) 
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class Combiner 

   method Combine(term t, [c1, c2,...]) 

      sum = 0 

      for all count c in [c1, c2,...] do 

          sum = sum + c 

      Emit(term t, count sum) 

  

class Reducer 

   method Reduce(term t, counts [c1, c2,...]) 

      sum = 0 

      for all count c in [c1, c2,...] do 

          sum = sum + c 

      Emit(term t, count sum) 

Applications: 

Log Analysis, Data Querying 

Collating 

Problem Statement: There is a set of items and some function of one item. It is 

required to save all items that have the same value of function into one file or perform 

some other computation that requires all such items to be processed as a group. The 

most typical example is building of inverted indexes. 

Solution: 

The solution is straightforward. Mapper computes a given function for each item and 

emits value of the function as a key and item itself as a value. Reducer obtains all items 

grouped by function value and process or save them. In case of inverted indexes, items 

are terms (words) and function is a document ID where the term was found. 

Applications: 

Inverted Indexes, ETL 

Filtering (“Grepping”), Parsing, and Validation 

Problem Statement: There is a set of records and it is required to collect all records 

that meet some condition or transform each record (independently from other records) 

into another representation. The later case includes such tasks as text parsing and 

value extraction, conversion from one format to another. 

Solution:  Solution is absolutely straightforward – Mapper takes records one by one and 

emits accepted items or their transformed versions. 

Applications: 

Log Analysis, Data Querying, ETL, Data Validation 

Distributed Task Execution 



Problem Statement: There is a large computational problem that can be divided into 

multiple parts and results from all parts can be combined together to obtain a final 

result. 

Solution:  Problem description is split in a set of specifications and specifications are 

stored as input data for Mappers. Each Mapper takes a specification, performs 

corresponding computations and emits results. Reducer combines all emitted parts 

into the final result. 

Case Study: Simulation of a Digital Communication System 

There is a software simulator of a digital communication system like WiMAX that 

passes some volume of random data through the system model and computes error 

probability of throughput. Each Mapper runs simulation for specified amount of data 

which is 1/Nth of the required sampling and emit error rate. Reducer computes 

average error rate. 

Applications: 

Physical and Engineering Simulations, Numerical Analysis, Performance Testing 

Sorting 

Problem Statement: There is a set of records and it is required to sort these records by 

some rule or process these records in a certain order. 

Solution: Simple sorting is absolutely straightforward – Mappers just emit all items as 

values associated with the sorting keys that are assembled as function of items. 

Nevertheless, in practice sorting is often used in a quite tricky way, that‟s why it is said 

to be a heart of MapReduce (and Hadoop). In particular, it is very common to use 

composite keys to achieve secondary sorting and grouping. 

Sorting in MapReduce is originally intended for sorting of the emitted key-value pairs 

by key, but there exist techniques that leverage Hadoop implementation specifics to 

achieve sorting by values. See this blog for more details. 

It is worth noting that if MapReduce is used for sorting of the original (not 

intermediate) data, it is often a good idea to continuously maintain data in sorted state 

using BigTable concepts. In other words, it can be more efficient to sort data once 

during insertion than sort them for each MapReduce query. 

Applications: 

ETL, Data Analysis 

Not-So-Basic MapReduce Patterns 

Iterative Message Passing (Graph Processing) 

Problem Statement: There is a network of entities and relationships between them. It is 

required to calculate a state of each entity on the basis of properties of the other 

entities in its neighborhood. This state can represent a distance to other nodes, 

http://www.riccomini.name/Topics/DistributedComputing/Hadoop/SortByValue/


 indication that there is a neighbor with the certain properties, characteristic of 

neighborhood density and so on. 

Solution: A network is stored as a set of nodes and each node contains a list of 

adjacent node IDs. Conceptually, MapReduce jobs are performed in iterative way and at 

each iteration each node sends messages to its neighbors. Each neighbor updates its 

state on the basis of the received messages. Iterations are terminated by some 

condition like fixed maximal number of iterations (say, network diameter) or negligible 

changes in states between two consecutive iterations. From the technical point of view, 

Mapper emits messages for each node using ID of the adjacent node as a key. As 

result, all messages are grouped by the incoming node and reducer is able to 

recompute state and rewrite node with the new state. This algorithm is shown in the 

figure below: 
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class Mapper 

   method Map(id n, object N) 

      Emit(id n, object N) 

      for all id m in N.OutgoingRelations do 

         Emit(id m, message getMessage(N)) 

  

class Reducer 

   method Reduce(id m, [s1, s2,...]) 

      M = null 

      messages = [] 

      for all s in [s1, s2,...] do 

          if IsObject(s) then 

             M = s 

          else               // s is a message 

             messages.add(s) 

      M.State = calculateState(messages) 

      Emit(id m, item M) 

It should be emphasized that state of one node rapidly propagates across all the 

network of network is not too sparse because all nodes that were “infected” by this 

state start to “infect” all their neighbors. This process is illustrated in the figure below: 



 

Case Study: Availability Propagation Through The Tree of Categories 

Problem Statement: This problem is inspired by real life eCommerce task. There is a 

tree of categories that branches out from large categories (like Men, Women, Kids) to 

smaller ones (like Men Jeans or Women Dresses), and eventually to small end-of-line 

categories (like Men Blue Jeans). End-of-line category is either available (contains 

products) or not. Some high level category is available if there is at least one available 

end-of-line category in its subtree. The goal is to calculate availabilities for all 

categories if availabilities of end-of-line categories are know. 

Solution: This problem can be solved using the framework that was described in the 

previous section. We define getMessage and calculateState methods as follows: 
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class N 

   State in {True = 2, False = 1, null = 0}, initialized 1 or 2 for end-of-line categories, 0 

otherwise 

  

method getMessage(object N) 

   return N.State 

  

http://highlyscalable.files.wordpress.com/2012/01/graph-propagation-3.png


8 method calculateState(state s, data [d1, d2,...]) 

   return max( [d1, d2,...] ) 

Case Study: Breadth-First Search 

Problem Statement: There is a graph and it is required to calculate distance (a number 

of hops) from one source node to all other nodes in the graph. 

Solution: Source node emits 0 to all its neighbors and these neighbors propagate this 

counter incrementing it by 1 during each hope: 

1 

2 

3 

4 

5 

6 

7 

8 

class N 

   State is distance, initialized 0 for source node, INFINITY for all 

other nodes 

  

method getMessage(N) 

   return N.State + 1 

  

method calculateState(state s, data [d1, d2,...]) 

   min( [d1, d2,...] ) 

Case Study: PageRank and Mapper-Side Data Aggregation 

This algorithm was suggested by Google to calculate relevance of a web page as a 

function of authoritativeness (PageRank) of pages that have links to this page. The real 

algorithm is quite complex, but in its core it is just a propagation of weights between 

nodes where each node calculates its weight as a mean of the incoming weights: 
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class N 

    State is PageRank 

  

method getMessage(object N) 

    return N.State / N.OutgoingRelations.size() 

  

method calculateState(state s, data [d1, d2,...]) 

    return ( sum([d1, d2,...]) ) 

It is worth mentioning that the schema we use is too generic and doesn‟t take 

advantage of the fact that state is a numerical value. In most of practical cases, we can 

perform aggregation of values on the Mapper side due to virtue of this fact. This 

optimization  is illustrated in the code snippet below (for the PageRank algorithm): 

1 

2 

3 

4 

5 

class Mapper 

   method Initialize 

      H = new AssociativeArray 

   method Map(id n, object N) 

      p = N.PageRank  / N.OutgoingRelations.size() 
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      Emit(id n, object N) 

      for all id m in N.OutgoingRelations do 

         H{m} = H{m} + p 

   method Close 

      for all id n in H do 

         Emit(id n, value H{n}) 

  

class Reducer 

   method Reduce(id m, [s1, s2,...]) 

      M = null 

      p = 0 

      for all s in [s1, s2,...] do 

          if IsObject(s) then 

             M = s 

          else 

             p = p + s 

      M.PageRank = p 

      Emit(id m, item M) 

Applications: 

Graph Analysis, Web Indexing 

Distinct Values (Unique Items Counting) 

Problem Statement: There is a set of records that contain fields F and G. Count the 

total number of unique values of filed F for each subset of records that have the same 

G (grouped by G). 

The problem can be a little bit generalized and formulated in terms of faceted search: 

Problem Statement: There is a set of records. Each record has field F and arbitrary 

number of category labels G = {G1, G2, …} . Count the total number of unique values 

of filed F for each subset of records for each value of any label. Example: 
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Record 1: F=1, G={a, b} 

Record 2: F=2, G={a, d, e} 

Record 3: F=1, G={b} 

Record 4: F=3, G={a, b} 

  

Result: 

a -> 3   // F=1, F=2, F=3 

b -> 2   // F=1, F=3 

d -> 1   // F=2 

e -> 1   // F=2 



Solution I: 

The first approach is to solve the problem in two stages. At the first stage Mapper 

emits dummy counters for each pair of F and G; Reducer calculates a total number 

of occurrences for each such pair. The main goal of this phase is to guarantee 

uniqueness of F values. At the second phase pairs are grouped by G and the total 

number of items in each group is calculated. 

Phase I: 
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class Mapper 

   method Map(null, record [value f, categories [g1, g2,...]]) 

      for all category g in [g1, g2,...] 

         Emit(record [g, f], count 1) 

  

class Reducer 

   method Reduce(record [g, f], counts [n1, n2, ...]) 

      Emit(record [g, f], null ) 

Phase II: 
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class Mapper 

   method Map(record [f, g], null) 

      Emit(value g, count 1) 

  

class Reducer 

   method Reduce(value g, counts [n1, n2,...]) 

      Emit(value g, sum( [n1, n2,...] ) ) 

Solution II: 

The second solution requires only one MapReduce job, but it is not really scalable and 

its applicability is limited. The algorithm is simple – Mapper emits values and 

categories, Reducer excludes duplicates from the list of categories for each value and 

increment counters for each category. The final step is to sum all counter emitted by 

Reducer. This approach is applicable if th number of record with the same f value is 

not very high and total number of categories is also limited. For instance, this 

approach is applicable for processing of web logs and classification of users – total 

number of users is high, but number of events for one user is limited, as well as a 

number of categories to classify by. It worth noting that Combiners can be used in this 

schema to exclude duplicates from category lists before data will be transmitted to 

Reducer. 
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class Mapper 

   method Map(null, record [value f, categories [g1, g2,...] ) 

      for all category g in [g1, g2,...] 
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          Emit(value f, category g) 

  

class Reducer 

   method Initialize 

      H = new AssociativeArray : category -> count 

   method Reduce(value f, categories [g1, g2,...]) 

      [g1', g2',..] = ExcludeDuplicates( [g1, g2,..] ) 

      for all category g in [g1', g2',...] 

         H{g} = H{g} + 1 

   method Close 

      for all category g in H do 

         Emit(category g, count H{g}) 

 

Applications: 

Log Analysis, Unique Users Counting 

Cross-Correlation 

 

Problem Statement: There is a set of tuples of items. For each possible pair of items 

calculate a number of tuples where these items co-occur. If the total number of items 

is N then N*N values should be reported. 

This problem appears in text analysis (say, items are words and tuples are sentences), 

market analysis (customers who buy this tend to also buy that). If N*N is quite small 

and such a matrix can fit in the memory of a single machine, then implementation is 

straightforward. 

Pairs Approach 

The first approach is to emit all pairs and dummy counters from Mappers and sum 

these counters on Reducer. The shortcomings are: 

 The benefit from combiners is limited, as it is likely that all pair are distinct 

 There is no in-memory accumulations 
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class Mapper 

   method Map(null, items [i1, i2,...] ) 

      for all item i in [i1, i2,...] 

         for all item j in [i1, i2,...] 

            Emit(pair [i j], count 1) 

  

class Reducer 

   method Reduce(pair [i j], counts [c1, c2,...]) 
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      s = sum([c1, c2,...]) 

      Emit(pair[i j], count s) 

Stripes Approach 

The second approach is to group data by the first item in pair and maintain an 

associative array (“stripe”) where counters for all adjacent items are accumulated. 

Reducer receives all stripes for leading item i, merges them, and emits the same result 

as in the Pairs approach. 

 Generates fewer intermediate keys. Hence the framework has less sorting to do. 

 Greately benefits from combiners. 

 Performs in-memory accumulation. This can lead to problems, if not 

properly implemented. 

 More complex implementation. 

 In general, “stripes” is faster than “pairs” 
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class Mapper 

   method Map(null, items [i1, i2,...] ) 

      for all item i in [i1, i2,...] 

         H = new AssociativeArray : item -> counter 

         for all item j in [i1, i2,...] 

            H{j} = H{j} + 1 

         Emit(item i, stripe H) 

  

class Reducer 

   method Reduce(item i, stripes [H1, H2,...]) 

      H = new AssociativeArray : item -> counter 

      H = merge-sum( [H1, H2,...] ) 

      for all item j in H.keys() 

         Emit(pair [i j], H{j}) 

Applications: 

Text Analysis, Market Analysis 

References: 

1. Lin J. Dyer C. Hirst G. Data Intensive Processing MapReduce 

Relational MapReduce Patterns 

In this section we go though the main relational operators and discuss how these 

operators can implemented in MapReduce terms. 

Selection 
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class Mapper 

   method Map(rowkey key, tuple t) 

http://www.amazon.com/Data-Intensive-Processing-MapReduce-Synthesis-Technologies/dp/1608453421/
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      if t satisfies the predicate 

         Emit(tuple t, null) 

Projection 

Projection is just a little bit more complex than selection, but we should use a Reducer 

in this case to eliminate possible duplicates. 
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class Mapper 

   method Map(rowkey key, tuple t) 

      tuple g = project(t)  // extract required fields to tuple g 

      Emit(tuple g, null) 

  

class Reducer 

   method Reduce(tuple t, array n)   // n is an array of nulls 

      Emit(tuple t, null) 

Union 

Mappers are fed by all records of two sets to be united. Reducer is used to eliminate 

duplicates. 
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class Mapper 

   method Map(rowkey key, tuple t) 

      Emit(tuple t, null) 

  

class Reducer 

   method Reduce(tuple t, array n)   // n is an array of one or two 

nulls 

      Emit(tuple t, null) 

Intersection 

Mappers are fed by all records of two sets to be intersected. Reducer emits only 

records that occurred twice. It is possible only if both sets contain this record because 

record includes primary key and can occur in one set only once. 
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class Mapper 

   method Map(rowkey key, tuple t) 

      Emit(tuple t, null) 

  

class Reducer 

   method Reduce(tuple t, array n)   // n is an array of one or two 

nulls 

      if n.size() = 2 

          Emit(tuple t, null) 

Difference 



Let‟s we have two sets of records – R and S. We want to compute difference R – S. 

Mapper emits all tuples and tag which is a name of the set this record came from. 

Reducer emits only records that came from R but not from S. 

1 

2 

3 

4 

5 

6 

7 

8 

class Mapper 

   method Map(rowkey key, tuple t) 

      Emit(tuple t, string t.SetName)    // t.SetName is either 'R' or 'S' 

  

class Reducer 

   method Reduce(tuple t, array n) // array n can be ['R'], ['S'], ['R' 'S'], or ['S', 

'R'] 

      if n.size() = 1 and n[1] = 'R' 

          Emit(tuple t, null) 

GroupBy and Aggregation 

Grouping and aggregation can be performed in one MapReduce job as follows. Mapper 

extract from each tuple values to group by and aggregate and emits them. Reducer 

receives values to be aggregated already grouped and calculates an aggregation 

function. Typical aggregation functions like sum or max can be calculated in a 

streaming fashion, hence don‟t require to handle all values simultaneously. 

Nevertheless, in some cases two phase MapReduce job may be required – see 

pattern Distinct Values as an example. 
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class Mapper 

   method Map(null, tuple [value GroupBy, value AggregateBy, value ...]) 

      Emit(value GroupBy, value AggregateBy) 

class Reducer 

   method Reduce(value GroupBy, [v1, v2,...]) 

      Emit(value GroupBy, aggregate( [v1, v2,...] ) )  // aggregate() : sum(), 

max(),... 

Joining 

Joins are perfectly possible in MapReduce framework, but there exist a number of 

techniques that differ in efficiency and data volumes they are oriented for. In this 

section we study some basic approaches. The references section contains links to 

detailed studies of join techniques. 

Repartition Join (Reduce Join, Sort-Merge Join) 

This algorithm joins of two sets R and L on some key k. Mapper goes through all tuples 

from R and L, extracts key k from the tuples, marks tuple with a tag that indicates a set 

this tuple came from („R‟ or „L‟), and emits tagged tuple using k as a key. Reducer 

receives all tuples for a particular key k and put them into two buckets – for R and for 

L. When two buckets are filled, Reducer runs nested loop over them and emits a cross 



join of the buckets. Each emitted tuple is a concatenation R-tuple, L-tuple, and key k. 

This approach has the following disadvantages: 

 Mapper emits absolutely all data, even for keys that occur only in one set and have no 

pair in the other. 

 Reducer should hold all data for one key in the memory. If data doesn‟t fit the memory, 

its Reducer‟s responsibility to handle this by some kind of swap. 

Nevertheless, Repartition Join is a most generic technique that can be successfully 

used when other optimized techniques are not applicable. 
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class Mapper 

   method Map(null, tuple [join_key k, value v1, value v2,...]) 

      Emit(join_key k, tagged_tuple [set_name tag, values [v1, v2, ...] ] ) 

  

class Reducer 

   method Reduce(join_key k, tagged_tuples [t1, t2,...]) 

      H = new AssociativeArray : set_name -> values 

      for all tagged_tuple t in [t1, t2,...]     // separate values into 2 arrays 

         H{t.tag}.add(t.values) 

      for all values r in H{'R'}                 // produce a cross-join of the two 

arrays 

         for all values l in H{'L'} 

            Emit(null, [k r l] ) 

Replicated Join (Map Join, Hash Join) 

In practice, it is typical to join a small set with a large one (say, a list of users with a list 

of log records). Let‟s assume that we join two sets – R and L, R is relative small. If so, R 

can be distributed to all Mappers and each Mapper can load it and index by the join 

key. The most common and efficient indexing technique here is a hash table. After 

this, Mapper goes through tuples of the set L and joins them with the corresponding 

tuples from R that are stored in the hash table. This approach is very effective because 

there is no need in sorting or transmission of the set L over the network, but set R 

should be quite small to be distributed to the all Mappers. 
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class Mapper 

   method Initialize 

      H = new AssociativeArray : join_key -> tuple from R 

      R = loadR() 

      for all [ join_key k, tuple [r1, r2,...] ] in R 

         H{k} = H{k}.append( [r1, r2,...] ) 
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   method Map(join_key k, tuple l) 

      for all tuple r in H{k} 

         Emit(null, tuple [k r l] ) 

 

References: 

1. Join Algorithms using Map/Reduce 

2. Optimizing Joins in a MapReduce Environment 

 

 

 

Source: http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ 

http://www.inf.ed.ac.uk/publications/thesis/online/IM100859.pdf
http://infolab.stanford.edu/~ullman/pub/join-mr.pdf

